ZZ

Computing the Envelope for Stepwise-Constant Resource
Allocations

Nicola Muscettola
NASA Ames Research Center

Moffett Field, California 94035-1000
mus@email.arc.nasa.gov

Abstract. Computing tight resource-level bounds is a fundamental problem in the con-
struction of flexible plans with resource utilization. In this paper we describe an efficient
algorithm that builds a resource envelope, the tightest possible such bound. The algorithm
is based on traasforming the temporal network of resource consuming and producing
events into a flow network with nodes equal to the events and edges equal to the neces-
sary predecessor links between events. A staged maximum flow problem on the network
is then used to compute the time of occurrence and the height of each step of the resource
envelope profile. Each stage has the same computational complexity of solving a maxi-
mum flow probiem on the entire flow network. This makes this method computationally
feasible and proruising for use in the inner loop of flexible-time scheduling algorithms.

1 Resource Envelopes

Retaining temporal fiexibility in activity plans is important for dealing with execution uncer-
tainty. For example, flexible plans allow explicit reasoning about the temporal uncontrollabil-
ity of exogenous events [11] and the seamless incorporation of execution countermeasures.
Fixed-time schedules (i.e., the assignment of a precise start and end time to all activities) are
brittle and it is typically very difficult to exactly follow them during execution. For an example
of the effect of fixed-time schedules in an intelligent execution situation, consider the “Skylab
strike” [6], when during the Skylab 4 mission, astronauts went on a sit-down strike after 45
days of trying to catch up with the exact demands of a fast paced schedule with no flexibility
for them to adjust to the space environment.

A major obstacle to using flexible schedules, however, remains the difficulty of computing the
amount of resources needed across all of their possible executions. This problem is particularly
difficult for multiple-capacity resources (such as electrical power) that can be both consumed
and produced in any amount by concurrent activities. Techniques have been developed [5]
[10] for giving conservative estimates of the resource levels needed by a flexible schedule,
yielding both an upper bound and a lower bound profile on the resource level over time. In the
context of a systemaiic search method to build flexible plans, resource-level bounds can be
used at each search step as follows: a) as a backtracking test, i.e., to determine when the
lower/upper bound interval is outside of the range of allowed resource levels at some time and
therefore no fixed-time instantiations of the plan is resource-feasible; and b) as a search termi-
nation test, i.e., to determine when the lower/upper bound range is inside the range of allowed
resource levels at all :imes and therefore all fixed-time instantiations of the plan are resource-
feasible.

Bound tightness is ex:remely important computationally since a tight bound can save a poten-
tially exponential amount of search (through early backtracking and solution detection) when
compared to a looser hound. In this paper, we discuss how to compute the resource-level enve-
lope, i.e., the measure of maximum and minimum resource consumption at any time for all
fixed-time schedules in the flexible plan. At each time the envelope guarantees that there are

P S NV 4

¥y

two fixed-time instantiations, one producing the minimum level and the other the maximum.
Therefore, the resource-level envelope is the tightest possible resource-level bound for a flexi-
ble plan since any ‘ighter bound would exclude the contribution of at least one fixed-time
schedule. If the resource-level envelope can be computed efficiently, it could substitute looser
bounds that are currently used in the inner core of constraint-posting scheduling algorithms
(Laborie 2001) with the potential for great improvements in performance.

To appreciate the d:fficulty of computing the resource level, we can compare the cases of a
fully flexible plan with that of a plan with a single fixed-time instantiation. In the fixed-time
case, the envelope degenerates to the resource profile that is used in the inner loop of tradi-
tional scheduling algorithms {2}{15]. Computing from scratch a resource profile is cheap. It is
easy to see that its worst cast time complexity is O (N 1g N) where N is the number of activi-
ties in the flexible plan. Consider now a fully flexible plan and assume that we naively wanted
to compute the resource-level envelope for a flexible plan by simply enumerating all schedules
and taking the maximum/minimum of all resource levels at all times. Since a flexible activity
plan has a number o possible instantiated fixed-time schedules that is exponential in the num-
ber of events, such n.iive method is clearly impractical in most cases.

Note that “resource-‘evel envelope calculation” is not equivalent to “scheduling with multiple
capacity”, an NP-hard problem. For example, note that a reduction of the envelope calculation
to scheduling is not straightforward. Consider the interval between minimum and maximum
envelope at a given t:me. It is true that a solution to the scheduling problem can be obtained in
polynomial time if tte envelope interval is always completely contained within resource avail-
ability (in which case all fixed-time instantiations are legal schedules). However, if at least two
times the envelope interval is partly outside the availability bound, one can generate examples
in which the envelop: cannot tell us whether there is a fixed-time schedule that is within avail-
ability at all times or whether for all schedules the resource level is outside availability at some
time. Discriminating between these two cases still requires search.

This paper presents 1 polynomial algorithm for the computation of resource-level envelopes
based on a novel combination of the theory of shortest-paths in the temporal constraint net-
work for the flexible plan, and the theory of maximum flows for a flow network derived from
the temporal and resource constraints. We develop the theory, show that the algorithm is cor-
rect, and that its asymptotic complexity is O(N O(maxflow(N))), where N is the number of
start/end times of the activities in the plan, which is at most twice the number of activities, and
O(maxflow(N)) is the complexity of 2 maximum flow algorithm applied to an auxiliary flow
network with N nodes. We believe that this method will be efficient in practice, since experi-
mental analysis [1] show the practical cost of maxflow to be as good as O (N 1%) However this
paper is a theoretical contribution and a definitive answer to its practical complexity will re-
quire further experim:ntal work.

In the rest of the paper we introduce some notation and describe the formal model of activity
networks with resource consumption. Then we review the literature on resource contention
measures and show an example in which the current state of the art is inadequate. The discus-
sion of our algorithm follows. Some informal examples to establish an intuitive understanding
of our method are first given. Then we establish the connection between maximum flow prob-
lems and finding sets of activities that have the optimal contribution to the resource level.
These sets are then shown to compute an envelope. Finally, we describe a simple envelope
algorithm and its complexity, and conclude discussing future work.

2 Resource Envelopes

Figure 1 shows an activity network with resource allocations. Our notation is equivalent to that
of previous work on fiexible scheduling with multiple-capacity resources [5][10]. The network
has two time variable: per activity, a start event and an end event (e.g., ;s and ey, for activity
A,), a non-negative flexible activity duration link (e.g., [2, 5] for activity A;), and flexible

separation links betv:een events (e.g., [0, 4] from e;, to e4). A time origin, T, corresponds to
time 0 and supports separation links to other events. Without loss of generality we assume that
all events occur after T; and before an event T, rigidly connected to T. The interval T(T, is

the time horizon T of the network.

<€ f21> (2,31 <€, >

[-1,4]

<C4e, -T4>

[0, +=°]

T, {30, 30] T.
nefl, 4] e [-7,-5]
€ [-1, 3] mel 1, 3)
l’ng[l,Z] r¢e[2, 4]

Figure 1: An activity network with resource allocations

Time origin, events and links constitute a Simple Temporal Network (STN) [8]. Unlike regular
STNs, however, each event has an associated allocation variable with real domain (e.g., ry
for event ey) representing the amount of resource allocated when the event occurs. We call
this augmented network R a piecewise-constant Resource allocation STN (cR-STN). In the
following we will assume that all allocations refer to a single, multi-capacity resource. The
extension of the results to the case of multiple resources is straightforward. An event e~ with
negative allocation is 1 consumer, while an e* with positive allocation is a producer.

This formalization covers many of the usual models for resource allocations. For example,
note that an event can be either a consumer or a producer in different instantiations of the
allocation variables (e.g., event ey for which the bound for ry; is [-1, 3]). This allows reason-
ing about dual-use activities (e.g., the activities of starting a car and running it make use of the
alternator as either a power consumer or producer). Moreover, some events can have resource
allocations that are opposite to each other (e.g., ;. vs. e;). This allows modeling allocations
that last only during an activity’s occurrence, such as power consumption. Note, however, that
this model does not cover continuous accumulation such as change of energy stored in a bat-
tery over time. A conservative approximation can be achieved by accounting for the entire
resource usage at the activity start or end.

We will always assume that the cR-STN is temporally consistent. From the STN theory [8],
this means that the shortest-path problem associated with R has a solution. Given two events e;
and e; we denote with |e;e,| the shortest-path from e, to e;. We will call a full instantiation of
the time variables in R a schedule s(.) where s(e) is the time of occurrence of event e accord-
ing to schedule s. The set S contains all possible consistent schedules for R. Each event e has a
time bound [et(e), 1t(e)], with et(e) and It(e) respectively the earliest and latest time for e. The
time bound represents the range of possible time values s(e) for all se S. From the STN the-
ory, we know that et(e) = — [eT,| and 1t(e) = |Te|. Finally, given three events, e,, e, and e;, the
triangular inequality arnong shortest paths |e;e;] < [e;e,] + |ezes] holds.

A fundamental data siructure used in the rest of the paper is the anti-precedence graph,
Aprec(R), for a cR-STN R. The anti-precedence graph is similar to the precedence graph of
[10] with the following differences: a) the links are in reverse order; 2) it does not distinguish
between the set of strict precedence edges, E., and the set of precedence edges that ailow time
equality, Eg; and 3) several possible kinds of precedence graphs are allowable for a network
R. Formally, Aprec(R: is a graph with the same events as R and such that for any two events

e, and e; with |e; e;] < 0 there is a path from e, to e; in Aprec(R). Alternatively, we can say that
an event e, precedes another e; in the anti-precedence graph if e; cannot be executed before e;.
A way to build an anti-precedence graph is to run an all-pairs shortest-path algorithm on R and
retain only the edges with non-positive shortest distance. Smaller graphs can also be obtained
by eliminating domirated edges. The choice of precedence graph type may affect performance
but not the correctness of the algorithm described here.

The cost of computing Aprec(R) is therefore bound by the cost of computing the all-pairs
shortest path graph for R, i.e., it is O(NE + N? Ig V) where N is the number of events (at most
twice the number of activities in the plan) and E is the number of temporal distance constraints
in the original cR-STN [7].

<[4, 10], 3> <[6, 13], 2>

<[5, 17], -4>

<[2, 11], -5> <(3, 15}, 3>

Figure 2: Anti-precedence graph with time/resource usage

Figure 2 depicts one of the anti-precedence graphs of the network in Figure 1 with the time
bound and the maximum allowed resource allocation labeling each event.

3 Resource Contention Measures

Safe execution of a flexible activity networks needs to avoid resource contention, i.e., the
possibility that for some consistent time assignment to the events there is at least one time at
which the total amount of resource allocated is outside the availability bounds. There are es-
sentially two methods for estimating resource contention: heuristic and exact. Most of the
heuristic techniques [14] {12] [3] measure the probability of an activity requesting a resource
at a certain time. This probability is estimated either analytically on a relaxed constraint net-
work or stochastically by sampling time assignments on the full constraint network. The occur-
rence probabilities are then combined in an aggregate demand on resources over time, the
contention measure. Probabilistic contention can give a measure of likelihood of a conflict.
However, it is not a +afe measure, i.e., the lack of detected conflicts does not exclude that a
variable instantiation for the cR-STN could cause an inconsistent resource allocation.

Exact methods avoid :his problem. They compute sufficient conditions for the lack of conten-
tion. [10] has a good survey of such methods. Current exact methods operate on relaxations of
the constraint network. For example, edge-finding techniques [13] analyze how an activity can
be scheduled relative to a subset of activities, comparing the sum of ail durations with a time
interval derived from the time bounds of all the activities under consideration. Relying solely
on time bounds ignores much of the inter-activity constraints and is effective only when the
time bounds are relatively tight. Therefore algorithms using these contention measures tend to
eliminate much of the flexibility in the activity network. Some recent work [5] [10] goes fur-
ther in exploiting inter-activity constraints. For example, [10] proposes a balance constraint
that is based on conservative upper and lower bounds on the resource level immediately before
and after each event ¢. These bounds precisely estimate the contribution of events that must
precede e and overes:imate the contribution of events that may or may not precede e. The
over-estimate assume that only the events with the worst contribution (producers for upper
bounds and consumer: for lower bounds) happen before e. The balance constraint appears to

work well in a flexihle scheduling algorithm [10] but the bounds on which it is based may be
very loose for networks with significant amounts of parallelism.

EE—>ETN M h—
\ Az N Az Az

At

\‘~~L0_v o]

~

Aln

Figure 3: Over-constraining a flexible activity network

For example, consider the activity graph in Figure3, consisting of two rigid chains of n activi-
ties with the same fied duration and the same fixed activity separation. Assume that the hori-
zon T is wide enough to allow any feasible ordering among them. Each activity consumes one
unit during its occurrence and the resource has two available units of capacity over time. It is
clear that the maximum resource level requested by the flexible plan at any time cannot exceed
two, and therefore all schedules obtained by merging any schedule of the two chains are feasi-
ble. A scheduling algzorithm using a resource-level envelope will therefore recognize that the
initial problem is alrcady a feasible flexible plan and will terminate immediately. In contrast, a
scheduler using the halance constraint will always detect an over-allocation until it somehow
constrains the network (e.g., by systematic or local search) with constraints that are at least as
tight as the two following cases: a) the start activity n of one chain occurs no later than the
start of the second activity of the other; or b) more than two activities overlap and there is an
activity k on one cham that must start between the end of activity i and the start of activity i+2
on the other chain. The dashed arrows in Figure 3 represent the constraints posted in case b.
The balance constraint cannot correctly handle this situation because it cannot account for the
constraint structure of all possible parallel chains simultaneously. The rest of this paper shows
that the full constraint structure can be efficiently exploited in calculating the resource-level

envelope.

4 Resource Envelopes

As discussed in the irtroduction, we are seeking the maximum and minimum possible resource
production (consumption) among all possible schedules of R. Note that the maximum (mini-
mum) overall resourcz level induced by R for any possible schedule can always be obtained by
assigning each allocation variable to its maximum (minimum) possible value. For any specific
value assignment to the allocation variables, each event has a constant weight: positive, c(e*),
for a producer and negative, — c(e”), for a consumer. Given a schedule seS and atime t € T,
E((t) is the set of events e such that s(e) < t. For any subset A of the set of events in R, E(R),
we define the resource-level increment as A(A) = 0 if A = @, and A(A) = T, e.ca C(€”) — c(e))
if A # @. The following functions of time rigorously define the resource-level envelope:

& Resource level due to schedule s: Ly(t) = A(Eq(t)).
o Maximum resource envelope : Lya(t) = maxges (Ly(t)).
o Minimum resource envelope: Lyn(t) = mingg (L(t)).

The resource level envelope that we seck is the interval bound function of time [Lpys(t),
Lax(t)]. Since the methods to compute Ly, and Ly, can be obtained from each other with
obvious term substitutions, we only develop the algorithm for L.

Before we formally discuss our algorithm, we want to introduce some examples to give an
intuitive feel of the foundations of the method. First consider an activity network consisting of

a single activity tha: produces or consumes resource capacity during its occurrence (Figure
4(a)). We could build L, by asking at each time te T whether A, can happen before, after or
can overlap t. If the activity starts with a resource production (Figure 4(b)), then the resource
level will be maximum at t if A, starts, contains or ends at t. This is always possible between
et(ey,) and It(e,.). Within this interval L, (t) = 1, while outside L, (t) = 0. Conversely, if A;
starts with a consumer (Figure 4(c)), then the maximum resource level can be zero at time t
only if A, can start after t or can end before t for some schedule. This is possible only before
It(e;s) and after et(e.). Therefore, Luax(t) = —1 between It(e;s) and et(e;), and Lpg,(t) = 0
everywhere else. This example suggests a strategy for computing L.y that looks at each event
and considers the incremental contribution of the event’s weight to the maximum résource
envelope at the earliest time for producers or at the latest time for consumers.

<(0, 3], 1> <[5, 10), -11>

Figure 4: Maximum resource-level envelope for a single activity

<10.3L 1> <[4, 10}, - ;> <[5, 11], 12>

<[8, 14], = 1>
NN A N

>

0 5 14
(b) ©

Figure 5: Maximum level envelope for two chained activities

For a complex network, however, this simple strategy is insufficient. Consider a rigidly linked
pair of activities with: a reusable resource allocation (Figure 5(a)). In this case, the time of
occurrence of e, and ej; are bound together. Looking at the contribution to the envelope of
each event in isolation, we would want to add the contribution of e;, as late as possible since it
is a consumer, and the contribution of e as early as possible, since it is a producer. The deci-
sion of which time to choose depends on the total contribution of both events. The total contri-
bution will be added at It(e,,) if the total contribution is a consumption (Figure 5(b)) or at
et(es) if the total contribution is a production (Figure 5(c)). Note that in both cases e and ej,
are pending at the selected time, i.e., their contribution has not been added yet to the envelope
but they both could occur at the selected time. This suggests revising the strategy for comput-
ing Limax as follows: at the earliest or latest time of each event, select the set of pending events
whose resource-level increment is maximum, eliminate these events from the pending events
and declare the increment for L, at that time to be their resource-level increment.

Now consider the network in Figure 1 and the event time bounds, maximum resource alloca-
tion and precedence graph in Figure 2. Assume that we want to compute Ly, (3). The set of
events that may be scheduled before, at or after time 3 is {eys, €y, €35 €3, €4}. However, of
these only {e., €35, €3, €45} are pending since the contribution to L, of €4, occurs at its earli-
est time 1. The subse: of pending events that we need to consider at time 3 to compute the

increment on L, are all those that are forced to occur at or before 3 assuming that some
pending event occurs at 3. These subsets are {ej}, {€3}, {€35, €3} and {ey,, €3, €3, €4} Unfor-
tunately, each of thee subsets has a negative weight and therefore none of them is selected at
time 3 since, from the definition of resource-level increment, the empty event set has the
maximum (zero) increment. At time 4 the set of pending events is augmented with ey and a
new subset of pending events with positive weight, {€,, €, €3, €3, €45}, is possible. This gen-
erates the increment that, added to L., (3), gives us Lyay(4).

The selection of the pending events subset of maximum resource-level increment is the key
source of complexity in calculating Lmax. An exhaustive enumeration of all subsets is intracta-
ble in the general case. Fortunately, it turns out that this selection problem is equivalent to a
maximum flow problem for an appropriate flow network derived from Aprec(R). We discuss

this rigorously in the rest of the paper.

5 Calculating Maximum Resource-Level Increments

Consider an interval HZT. We can partition all events in R into three sets depending on their
relative position with respect to H: 1) the closed evenrs Cy with all events that must occur
strictly before or at the start of H, i.e., such that that It(e) < start(H); 2) the pending events Ry
with all events that can occur within or at the end of interval H, i.e., such that 1t(e) > start(H)
and et(e) < end(H); «nd 3) the open events Oy with all events that must occur strictly after H,
i.e., such that et(e) > end(H).

The set Ry could contain events that can be scheduled both inside and outside H. If H=T, then
Cr =@, Ry = E(R) and Oy = @. If H is a single instant of time, i.e., H=[t, t], we will use the
simplifying notation C=Cy, 4, Re=Ry, ¢ and O,=0y .

Assume that we want to compute the resource-level increment for a schedule s at a time te H.
This will always include the contribution of all events in Cy and none of those in Oy irrespec-
tive of s and t. With r2spect to the events in Ry, if an event is scheduled to occur at or before t,
then all of its predecessors (according to Aprec(R)) will also have to occur at or before t. In
other words, it is possible to find a set of events X € Ry such that the events e € Ry that are
scheduled no later then t in s are those in X or those e, € Ry such that Jesep| < 0 for some e, €
X. We call this the predecessor set Py of X. Therefore, the resource level at time t for a given
schedule s is the sum of the weights of events in Cy and in Px € Ry. Since we are trying to
maximize the resource level, we will look for the sets Py with the maximum total weight.

An important propertv that we will exploit later is that given two predecessor sets Py and Py,
Px N Py and Px UPYy are also predecessor sets.

5.1 Resource-Level Increments and Maximum Flow

We know that to compute Ly, we want to look for sets Px with maximum weight. We find
these by computing 1 maximum flow for an auxiliary flow network built from Ry and
Aprec(R). For a complete discussion of maximum flow problems see [7]. Here we only high-
light some concepts ard relations that we will use.
First let us define the zuxiliary flow problem that we will us to compute Lypax.
Resource Increment Flow Problem: Given a set of pending events Ry for a cR-STN R, we
define the resource increment flow problem F(Ry) with source oand sink tTas follows:
1. Foreach event ¢ € Ry there is a corresponding node eeF(Ry).
2. Foreach event e* €Ry, there is an edge o—»e” with capacity c(e”).
3. For each event ¢~ € Ry, there is an edge e —Twith capacity c(e”), i.e., the opposite of
e ’s weight in R.
4. For each pair cf e; and e; with an edge e;—e; in the anti-precedence graph Aprec(R),
there is a corre:ponding link e;—e; in F(Ry) with capacity +oo.

Figure 6 shows the auxiliary flow problem for the anti-precedence graph in Figure 2, with
every edge labeled with its capacity.

-4 a
oo

e

i Internal flow (precedence constraints)
Incoming flow (producer events)
——— Outgoing flow (consumer events)

Figure 6: Resource increment flow problem

Consistent with the theory of maximum flows, we will indicate f(ey, e;) as the flow associated
to a link e;—e; in FiRy). The flow function has, by definition, several properties. It is skew-
symmetric, i.e., f(ez, €;) = — f(e;, ;). Each flow has to be not greater than the capacity of the
link to which it is associated. For example, referring to the flow network in Figure 6, f(g, ez)
<2, while f(ez, g) < 0 since there is no edge from ez, and o, a situation equivalent to the ca-
pacity of the edge e.—a being zero. We also use the implicit summation notation f(A, B),
where B and A are disjoint event sets in F(Ry), to indicate the flow f(A, B) = ZcaZpesf(a, b).
Consider now any subset of events ACRy and let us call A® the set of events A° = Ry — A.
From the final property defining a flow function, flow conservation, we can obtain the follow-
ing: f({c}, A) = f(A, {1}) + f(A, A"). The total network flow is defined as f({g}, Ry = f(Ry,
{1}). The maximum flow of a network is a flow function fue, such that the total network flow is
maximum.

A fundamental concept in the theory of flows is the residual network. This is a graph with an
edge for each pair o nodes in F(Ry) with positive residual capacity, i.e., the difference be-
tween edge capacity and flow. Each edge in the residual network has capacity equal to the
residual capacity. For example, considering the network in Figure 6, assume that f(e;., 7) = 3
and f(o, ey) = 2. The residual network for that flow will have the following edges: e;.—t with
capacity 1, 7—e;. with capacity 3, and e,,—0 with capacity 2. Also note that any residual
network for any flow of F(Ry) will always have an edge of infinite capacity for each edge in
the precedence graph Aprec(R). An augmenting path is a path connecting o to T in the resid-
ual network. The existence of an augmenting path indicates that additional flow can be pushed
from o to 7. Alternatively, the lack of an augmenting path indicates that a flow is maximum.

A resource-level increment A(A) for an event set A C Ry is related to a flow in F(Ry) as fol-
lows. We define the producer weight in A as ¢(A*) = Ze, ¢ 4 ¢(e”) and the consumer weight in
A as ¢(A7) = Z_ ¢ 4 ¢(e7). We also define the producer residual in A for a flow f of F(Ry) as
r(Ah) = c¢(A") - f({o}, A), i.e., the total residual capacity of the edges from o to A, and the
consumer residual in A as r{A”) = c(A") - f(A, {1}).

Lemma 1: A(A) = r(A") - r(AD) + f(A, A°).
Proof: A(A) = (A - ¢(A)) = (e(AN - f{o}, A)) - (c (AD) - f{o}, A) = r(A") - (¢(A") -
f(A, {t}) - f(A, A9)) = r(A") - r(A") + f(A, A9).O

We now focus on preclecessor sets such as Py.

Lemma 2: f(Py, P°y) <0. Moreover, f(Py, P°x)=0 if and only if f(e;, €;)=0 for each e;€ P°x
and e;€Py.

Proof: From the definition of predecessor set there is no edge e;—e; in F(Ry) with e;e P’x and
e,€ Px. Therefore, f(e,, e;) <0 and f(Py, P°x) € 0. The second condition can be demonstrated
by observing that the sum of any number of non-positive numbers is 0 if and only if each num-

beris 0.0

Corollary 1: APy} <r(Px") —r(Py).
Proof: Immediate from Lemma 1 and Lemma 2.

5.2 Maximum flows and maximum resource-level increments

We can now find the maximum resource-level increment set Py © Ry. Since Ppy = & may
be true, the maximuni resource-level increment is always non-negative. The computation of the
set uses a maximum flow £, of F(Ry). We indicate with ry,,(A) the producer/consumer re-
sidual of A computec for .. The following fundamental theorem holds.

Theorem 1: Given a partial plan Ry, consider the (possibly empty) set P, of events that are
reachable from the source o in the residual network of some fue of F(Ry). Ppay is the prede-
cessor set with maximum N Ppy,) 20.

Proof: Assume that r ,,(e*) = 0 for each €' € F(Ry). In this case no event is reachable from o
in the residual network, thus Ppmay = & and A(Pmy) = 0. From Corollary 1, for any predecessor
set Py it is A(Px) € —Tmax(Px) €0 = A(Pp,) and therefore A(Ppgy) is maximum.

AssUme Now I'ma(e) > 0 for some e” € F(Ry), in which case Ppay is not empty. The following
three properties hold.

1. Py is a predecessor set.
If not, there will be an event e, € Py, such that Je,e;] < 0 for some event €;€ Ppy,,- From the

definition of Aprec(R), however, we know that there must be a path in Aprec(R) from e; to
e,. Since this path will be present in F(Ry) with all links having infinite capacity, the path
will also always be present in any residual network for any flow. Therefore there is a path in
the residual network going from o to €; (by definition of Py, and then to e;. Therefore,
e,€ Pray, which is a contradiction.
2. Fmax(Pmas) = 0.
If not, there will b2 an event € € Py such that ry..(e7) > 0. We can therefore build an
augmenting path of F(Ry) as follows: 1) a path from o to e~ with positive residual capacity
which exists by definition of Pp,,; and 2) an edge e"—t with positive residual capacity
I'max(€?). The existence of the augmenting path means that fg,, is not a maximum flow,
which is a contradiction.
3. frnax(Prav Pomaz) =0
Since Py, is a predecessor set, from the proof of Lemma 2 we know that frax(Paxs P ra) <
0. If fro(Proaxs Poomd < 0, then there is a pair of events e,€ Py, and €;€ P ey such that
f.ax(€1, €2) < 0. This means that the residual capacity from e; to e; is positive and therefore
there is an edge e;-—e; in the residual network. But by definition of Py,,, this means that
€,€ Py, which is a contradiction.
Applying the properti:zs of P,y to Lemma 1, A(Pnax) = Fax (Puax”) = Fmax(Pmax) + Fnax(Pimaxs
P e = Fonax(Prnax) > 0.
To prove the maxima'ity of Py, observe from Corollary 1 that a non-empty predecessor set
Px has A(Py) > 0 onlv if ry,{e”) > 0 for some e" € Py. It is easy to see that Py is the set of
events reachable in th: residual graph from Px* ¢ P...." and that the properties at points 2 and
3 above also hold for Px. Therefore, A(Px) = Fmax(Px) <€ Fmax(Puax) = A(Pman), which proves
the maximality of Pmay.”]

The construction of Py, discussed before does not guarantee its uniqueness since it depends
on a specific maxirum tlow among potentially many for F(Ry). The following theorem
proves, however, thit Py, is indeed unique for all maximum flows of F(Ry) and that it con-
tains the minimum number of events among all predecessor sets with maximum positive re-

source-level increment.

Theorem 3: The predecessor set Png, with maximum resource-level increment A(Pn,,) and
with minimum number of events is unique across all maximum flows of F(Ry).

Proof: Consider two maximum flows fa; and fmay, x among all maximum flows of F(Ry) and
assume that they produce two distinct maximum resource-level increment predecessor sets,
Prax, j and Py, - From the maximality of their increment, it must be APmaxi) = A(Puayj) =
Amax We can rewrite one maximum predecessor set as Puayj = Pjw U Py where Pjr= P
N Praxk a0d Py = Py — Pamyj- The hypothesis of distinction of Py, j and Py, k yields Py
+ 0.

First we observe thar A(Pmk) Amay- If n0t, A(Pi3) > 0 and A(Py5) > 0. But this means that
Pjok = Prayj U Py is a predecessor set such that A(Pjud > Amax, which is a contradiction.
Consider now Py and let us call rj(e) the residual rya(e) computed in flow f,,,a,,_‘j Since
A(Pjri) = Amay, it must be r,(e") O0ife’ e P; . Also, rj(e”) = 0 for each e” € Ppyy - From
Lemma 1, A(Pj1) = fraxj(Pjx, P = 0. From Lemma 2 it follows that fiu j(Pj Pmk) 0.
Hence, there cannot be a link in the residual network from an event in Pjry to one in Py
Therefore, e € Pj_k is not reachable from o in the residual network and P = &. Since this is
true for any pair <j, k>, Py is unique.

The same argument applied to Prax and PP°CP.., proves the minimality of Py, Where PPisa
predecessor set such that A(P) = Amax[

6 Building Resource Envelopes

So far we know that the resource level for a schedule s at time t € H is equal to Ly(t) = A(Cw)
+ A(Py) for some predecessor set Px. However, it is not immediately obvious that the converse
also applies. Given any predecessor set Px, we want to be able to determine a time tx € H, the
separation time, and a schedule s, the separation schedule, such that all and only the events
in CyUPy are scheduled at or before time tx. The existence of a separation schedule and a
separation time is not obvious because of the upper-bound constraints in the STN, i.e., the
metric links between events that do not contribute to the construction of Aprec(R). If some
event occurs too early with respect to tx, an upper-bound constraint may force some event to
occur before time tx even if it is not a successor in Aprec(R). We now show that indeed we
can find a separation time and schedule for any Px and therefore also for Pp,,. For the latter,
we show that tx is one of the times at which the resource level is maximum over H for any
schedule. This yields the maximum resource envelope Ly if H= [t, t] and we scan t over the

horizon T.

6.1 Latest events

First we find the everts in Px that will be scheduled at time tyx. We say that e is a latest event
of Py if it is not a str:ct predecessor of any other event in Py, i.e., for any ¢’ € Py, |e’ | 2 0.
We will call Py jq the set of all latest events in Px. Also, we define Py carty = Px — Px ate-

The following property holds between events in Py ju. and Px eariy-

Property 1: Any event €€ Py is a strict predecessor of some event €; € Px iy i€,
fezed < 0.

Proof: Since €1 € Py earyy, there must be an event ey; € Py such that leres] < 0. If €11 € Py 1ates
the property is proven. Otherwise, we can find a finite chain of events e; ey ... e3¢
with e,€ Py 1 and feze] < 0, [egje;;.1) < 0 and Jeseq| < 0, yielding [ezeq| < 0 for the triangular
inequality of the shortest paths. If we could not find an e; € Py 1 to start such a finite chain,
the chain would have to become a cycle of events in Px eoqy, which contradicts the temporal

consistency of R.OJ

6.2 Separation Time for Latest Events

We can construct a s:paration time ty at which we will schedule all latest events.

Lemma 3: There is a time interval [tymim txmad that intersects all time bounds
[et(e), lt(e)] with e € Px . and such that start(H) <ty mar

Proof: There must b= a time value in common among all time bounds in Px . If not, there
would be two events e;, €; € Py qe such that et(e;) > It(ez) and, from the triangular inequality,
[eiez] < — et(e;) + Itie;) < 0, which is inconsistent with the definition of Py jae. Observe that
there must be an event e € Py e such that It(e) = tx, max If start(H) > tx max, then It(e) <

start(H), which contradicts e € Ry.0

We define the separztion time as txy= max (start(H), ty m;0), with tx = start(H) if Px=0. We
can then show that each event in P can be scheduled after ty.

Lemma 4: For any evente € Py, It(e) > ty

Proof: By definition of Ry it must be It(e) > start(H). So we only need to consider the case in
which ty = tx mi, > start(H). In this case there is at least one event e; € Py o such that et(e) =
tx,mine For this event it is Je; e] < — et(e;) + It(e). Since e € Py, it must be that e, e| > 0, other-
wise e would follow :n Apred(R) an event in Px. Therefore, lt(e) 2 et(e;) + le; €| > et(e) =ty

min'D

6.3 Separation schedule for predecessors

We now build the separation schedule sx for Py and ty, i.e., a schedule such that sx(e) < tx for
ee CyyUPx and sx(e) > tx for ee P’xUOx. Note that the following discussion holds also if
Px=2 and tx= start(H).

The following algorithm builds the separation schedule.

1. Schedule all ee Py ju at ty, i.c., 5x (€) = tx.
2. Propagate time through R obtaining new time bounds [et’(e), It’(e)] for each e E(R).

3. Schedule all events e € E(R) — Py 5 at their new latest time, i.c., sx(e) =1t’ (e).

For sy to be a schedulz, it must be consistent with respect to R. We see that step 1 is consistent
since: 1) tx belongs tc the intersection of all latest event time bounds; and 2) since for any pair
of latest events |e;e;[20, scheduling one at ty does not prevent any other latest events to be also
scheduled at time tx. Step 3 above is also consistent because it is always possible to schedule
all events at their latest times without temporal repropagation.
Now we need to show that the property defining a separation schedule is satisfied for sx. Note
that we already know that it is satisfied for events in Py j5,. By definition it is also satisfied for
events in Cy and Oy. Therefore, we need to show that it is satisfied for Py earty and Px.
a)lt’(e) < tx for all e &€ Py cany
According to Property 1 we can pick an event e;€ Py, 15 such that Je; €] < 0. From the trian-
gular inequality we have 1t’(e) <1t’(e;) + [e; €] < 1t’(e;) = tx.

b)lt’(e) > tx for all ee P'y.
From Lemma 4 we know that before temporal repropagation it was lt(e) > tx. After it, either
It’(e)=lt(e), in which case the condition is satisfied, or 1t’(e) has changed due to a propaga-
tion that starts frorn some event e;€ Py g So it must be It’(e) = tx + [e;e]. Since e€ P, it
must be |e,e] > 0, ctherwise e would follow in Apred(R) an event in Px. Hence, It’(e) > ty.

We can now compure the maximum resource level for any schedule within the inverval H. In
the following, we indicate with Pyac(Ry) the Pry computed over F(Ry).

Theorem 4: The macimum resource level for any schedule of R over an interval HCT is given
by A(Cy) + APpa(Ry))-

Proof: We know tha: at any time te H the events in Ry that are scheduled before t are a prede-
cessor set Py. For :he resource level at time t it is always A (Cy) + A(Px) < A (Cy) +
A(Pax(Ry)), the latier being the resource level at the separation time tx for the separation

schedule sx.0
There are two interesting special cases of Theorem 4.

Corollary 2: The maximum possible resource consumption for R over T is equal to

A(Ps(Rp).

This means that esti:nating the maximum possible resource consumption for a flexible plan
over the entire time Lorizon has the same complexity as a maximum flow problem.

Corollary 3: L,,,.(t) = AC)+ AP, (R)).

The last formula tells us how to compute the resource-level envelope at a specific time. We
now need to find an =fficient algorithm to compute the resource-level envelope over the entire

horizon T.

7 Efficient Computation of Resource Envelopes

From Corollary 3, the naive approach to compute a resource-level envelope would be to iterate
over all possible te T. However, we only need to compute Ly, at times when either C,or R,
changes. This can on'y happen at et(e) or 1t(e) for any e€ E(R). Therefore we need to compute
new levels for Lupg cnly 2N times, where N is the number of start/end events in the original
activity network. For each such computation, we need to: a) compute Py (Ry) by running a
maximum flow on a network with at most N nodes; and 2) collect and sum the events in C; and
Prax(RY). The total complexity of the algorithm is therefore O(N O(maxflow(N)) + N?), where
O(maxflow(N)) is the complexity of finding a maximum flow with an arbitrary maximum flow
algorithm. For modern algorithms using the “preflow push” method [9], the worst case com-
plexity can be O(N*). Extensive empirical studies show that the practical complexity of varia-
tions of the method can be as fast as O(N"®) [1]. This suggests that resource-level envelopes
could operate in the inner loop of scheduling search algorithms, especially if they can be com-

putated incrementally

8 Conclusions

In this paper we describe an efficient algorithm to compute the tightest exact bound on the
resource level induced by a flexible activity plan. This can potentially save exponential

amounts of work wirth respect to currently available looser bounds. Future work will pursue
two directions. The first is developing more incremental algorithms for the computation of the
envelope. Using a temporal scanning of the events in the temporal network, it should be possi-
ble to significantly reduce the size of the networks on which the maximum flow algorithm
needs to be run. This could significantly speed up the envelope calculation. The second direc-
tion will test the practical effectiveness of resource envelopes in the inner loop of search algo-
rithms for multi-capacity resource scheduling, such as those used in (Laborie, 2001). This
includes inner-loop tacktracking and termination tests and variable and value ordering heuris-
tics that exploit more directly the properties of the resource envelopes.

Acknowledgements

Ari Jonsson and Jeremy Frank were instrumental in pushing me to focus on this problem. Dur-
ing a dinner discussion at possibly the worst tourist restaurant in Paris, Grigore Rosu con-
vinced me that the key of the resource-level envelope problem lies with the maximum-flow
problem. Paul Morris. gave me several helpful comments and suggested a simplification of the
proof of theorem 1. Finally, Amedeo Cesta, Mary Bemnardine Dias, Gregory Dorais, Paul
Tompkins, an anonymous reviewer of a previous, unsuccessful submission, and a reviewer of
the current successfu! one, gave several comments that helped me improve the presentation.

This work was performed with the support of the Intelligent Systems project of the Computing,
Information and Communication Technologies research program of the National Aeronautics

and Space Administration.

References

1. R.K Ahuja, M. Kodiaiam, A.K. Mishra, J.B. Orlin. Computational Investigations of Maximum Flow Algorithms,
European Journal of {dperational Research, Vol 97(3), 1997.

2. K.R. Baker. Introduction to Sequencing and Scheduling. Wiley, New York, 1974.

3. 1.C.Beck, A.J. Davensort, E.D. Davis, M.S. Fox. Beyond Contention: Extending Texture-Based Scheduling
Heuristics. in Proceedings of AAAI 1997, Providence, RI, 1997.

4. A. Cesta, A. Oddi, S.F. Smith, A Constraint-Based Method for Resource Constrained Project Scheduling with
Time Windows, CMU RI Technical Report, February 2000.

5. A. Cesta, C. Stella. A 'ime and Resource Problem for Planning Architectures. Proceedings of the 4™ European
Conference on Planning (ECP 97). Toulouse, France, 1997.

6. H.S.F. Cooper Jr., The Loneliness of the Long-Duration Astronaut, Air & Space/Smithsonian, June/July 1996,
available at hitp://wwh.airspacemag. com/ASM/Mag/Index/1996/1J/11da. html

7. T.H. Cormen, C.E. Leiserson, R.L. Rivest. Introduction to Algorithms. Cambridge, MA, 1990.

8. R. Dechter, I. Meiri, J. Pearl. Temporal Constraint Networks. Artificial Intelligence, 49:61-95, May 1991.

9. A.V. Goldberg, R.E. Tarjan. A New Approach to the Maximum-Flow Problem. Journal of the ACM, Vol. 35(4),
1988.

10. P. Laborie, Algorithms for Propagating Resource Constraints in Al Planning and Scheduling: Existing Ap-
proaches and New Results, Proceedings of ECP 2001, Toledo, Spain, 200t.

11. P. Morris, N. Muscettcla, T. Vidal. Dynamic Control of Plans with Temporal Uncertainty, in Proceedings of
IJCAI 2001, Seattle, WA, 2001

12. N. Muscettola. On the Utility of Bottleneck Reasoning for Scheduling. in Proceedings of AAAI 1994, Seattle,
WA, 1994.

13. W.P.M. Nuijten. Time and Resource Constrained Scheduling: a Constraint Satisfaction Approach. PhD Thesis,
Eindhoven University »f Technology, 1994.

14. N. Sadeh. Look-ahead techniques for micro-opportunistic job-shop scheduling. PhD Thesis, Camnegie Mellon
University, CMU-CS-¢1-102, 1991.

15. M. Zweben, M.S. Fox. Intelligent Scheduling. Morgan Kaufmann, San Francisco, 1994.

